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Pancharatnam phase for displaced number states 
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lnstitnte of physics, 11001 Belgrade, W Box 57, M i %  Yugoslavia 

Received 5 January 1993 

Abstr@. The Panchmam phase for displaced number states of the harmonic oscillator,is 
discussed. In particular, it is examined how a single quantnm osc~lator, driven by a suitable 
transient exfemal force, evolves fiom the initial eigenstate um(x)  to the final, displaced number 
st& modified wirh a mifable phare jncror. The significance of this, usnaUy neglected, phase 
factor for the solution of the relevant time-dependent Schr6dinger equation and for the geometric 
phase accumulated in the wavefunction dnring the time evolution of F e  system is examined. The 
general expression for the geometric phase for a non-cyclic evolution from an initial d i sp l ad  
number state at time to the final state at time tz is derived and two applications, that of S and 
harmonic forcing, are worked out. The special case of cyclic evolution is subsequently discussed 
and, in particular, the conditions leading to such an evolution are derived. The relationship to 
the classical norion of cyclic evolution is also emmined in some detail and it is demonsmted 
that the~general expression for the Pancharatnam phase reduces to the corresponding Beny 
phase. It is found that, in the case of cyclic evolution, the geometric phase for displaced number 
states becomes independent of the quantum number m of the initial eigenstsate, and becomes 
equal to the geomehic phase for the wherent  states.^ The general wnsiderations are illustrated 
with the special case of the harmonic forcing function. Finally, the possibility of experimental 
verification, in the realm of quantum optics, is briefly considered. 

1. Introduction 

Since the discovery by Beny [l] of the general existence of an observable phase 
accumulation in the wavefunction of a quantum-mechanical system with an adiabatically 
changing Hamiltonian, our understanding of this phase has greatly increased. The Berry 
phase has attracted much theoretical interest [Z-81 and it has been repeatedly corroborated 
by experiment [9-161. The restriction to adiabaticity was l i d  by Aharonov ind Anadan 
[17] by removing from the wavefunction the time integral of the expectation value of the 
Hamiltonian as a dynamical phase. It was shown that once the dynamicd. phase is removed, 
the phase difference accumulated during the time evolution of the system has a purely 
geometric origin. A  recent review of the calculation  of the non-adiabatic Berry phases is 
given by Moore [NI. Finally, the restriction to cyclic motion and unitary evolution was 
removed by Samuel and Bhandari [19]. Their work was based on the earlier investigation 
of Pancharatnam [20] on the interference of polarized light. 

The geometric (topological) phase for the case of the forced quantum oscillator with, or 
without, time-dependent mass and frequency has been~discussed repeatedly in this journal 
[21-261 and elsewhere [27,28]. Various approaches to the calculation of the geometric phase 
have been explored [18] and it has been demonstrated that the coherent states provide an 
especially convenient tool. In this paper, we examine the Pancharatnam phase [18, 191 for 
displaced number states of the harmonic oscillator [29-321. The importance and unusual 
properties of these states have been discussed recently in some detail in [33, 341. It is 
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hoped that these states can be prepared, in the r e a h  of quantum optics, by driving the 
microwave cavity field (initially prepared in a number state.) of the micromaser with a 
classical current [33]. In section 2 we review the propeaies of displaced number states 
relevant for the present work. In section 3 we examine how a single quantum oscillator, 
driven by a suitable transient external force, evolves from the initial eigenstate U&) to 
the final, displaced number state modified with a suitable phase factor. This problem was 
solved some time ago and in several different ways 135-441. We present an exact and 
straightforward solution of the relevant time-dependent Schrodinger equation and discuss 
the significance of the 'unimportant' phase factor which has been, as a rule, simply ignored. 
In section 4 we derive the geometric phase for generally non-cyclic evolution from an initial 
displaced number state at time tl to the final state at time tz. Two simple examples, that 
of 8 and harmonic forcing, are then presented. In section 5, the special case of cyclic 
evolution is discussed. We demonstrate that the general expression for the Pancharatnam 
phase reduces to the corresponding Berry phase and, additionally, examine in some detail 
the cyclic evolution for the special case of the harmonic forcing function. Finally, in section 
6 we present our conclusions. 
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2. Displaced number states 

In this section we review the properties of displaced number states relevant for the later 
work and fix the notation. When in the general solution of the time-dependent Schr8dinger 
equation for a harmonic oscillator 

we take [29, 31-34] 

with m = 0,1,2,. . . , we obtain a normalized coordinate-space wavefunction representing 
the displaced number state Y$"(x, t ) .  In (2.1), u,(x) denotes the harmonic oscillator 
eigenfunction corresponding to the nth energy level E,, [45], while in (2.2) 

(Y = ( ~ 1  + iarz = exp(iq) (2.3) 

denotes the complex displacement parameter and L f )  the associated Laguerre polynomial 
[46]. With the help of the generating function for the product of the associated Laguerre 
and Hermite polynomials it is possible to sum (2.1) and thus to obtain the timedependent 
wavefunction for the displaced number state in a closed form [47]: 

Y;~)(X, t )  = exp(i#m)um(x -xc ( t ) ) .  (2.4) 

Here, the phase #m is given by 

(2.5) 



Paizcharatnnm phase for displaced number states 3315 

with 

x&) = (r) = 2ulorl cos(wt - p) 

and 

U (-g2 
denoting the half-width of the harmonic oscillator ground state U&). (In (2.8), p represents 
the oscillator mass.) For m = 0, W$‘“(x, t )  reduces to the familiar coherent state 
wavefunction. we shall also need the corresponding momentum space wavefunction 

(2.9) @?(P. t )  = exp(i&)um(p - p d t ) ) .  

Here, um(p) ‘denotes the momentum-space eigenfunction corresponding to um(x)  [48]. The 
phase 4; is given by 

~. 

(2.10) 

Displaced number states have a number of interesting properties. They are not mutually 
orthogonal: 

+or*dexp[iw(t - t‘)] + i(m + +(t - t’) 
2 ~’ 

The proof of (2.11) is based on the following relation (or, p are complex): 

The set [qim)(x, t ) } ,  for any m = const, is (over)complete: 

We also mention that 

(2.14) 

The form of (2.4) is very perspicuous; W;’”)(X, t )  is, to within a phase factor, equal 
to the harmonic oscillator eigenfunction um displaced to the point x&) which follows 
classical motion of the harmonic oscillator with the,amplitude X = 201~~1. The shape of 
the wavepacket remains the same all the time. The classical energy corresponding to such 
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oscillations is E, = pw2X2/2 = R o l ~ u l ~ .  Since the curves Iu,(x)12 and lYim)(x, t)12 = 
lu,(x - xc(t))l2 have the same shape, and therefore the same width, displaced number 
states q$"(x,  t )  obey the familiar x-p uncertainty relation SxGp = (m + $)TI [45]. The 
number phose uncertainty product for displaced number states was examined in [49]. The 
probability distribution lcLm)[* of the vibrational quanta for displaced number states exhibits 
characteristic oscillations which are interpreted as interference in phase space [33], similarly 
to the case of squeezed states [50-531. We mention here only that the number distribution 
depends on the magnitude of the complex displacement parameter la[ (it is independent of 
the phase q) and on the quantum number m. The average number of vibrational quanta, for 
the displaced number state YLm)(x, t ) ,  is (n) = m + .Since m stands for the quantum 
number of the initial state U&), from which the displaced number state develops under the 
influence of a suitable external force (as described in the next section), we get the physical 
interpretation of the complex displacement parameter: its squared magnitude is equal to 
the average number of excited quanta, while its phase (0 corresponds to the classical phase 
shift. The average energy ( E )  consists of two terms: the first is the energy of the initial 
state, while the second represents the classical oscillation energy, ( E )  = Ro(m + $) + Ec. 

Finally in this section, we mention that the displaced number states with m # 0 can, 
alternatively, all be generated from the m = 0 displaced number state (that is, from the 
coherent state) by repeated action of the operator $e-iort - a*, 
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with m = 1,2,3, . . . . Here 

(2.15) 

(2.16) 

denotes the familiar harmonic oscillator annihilation operator. 

3. Forced harmonic oscillator 

In this section we show that a single quantum oscillator driven by a suitable transient 
external force evolves from the initial state u,(x) to the final, displaced number state oniy 
when the latter is modified with a suitable phase factor. We assume a Hamiltonian of the 
form [48] 

with 

*( t )  = -?F(t) - pG(t )  (3.2) 

representing the action of an external timedependent force. In (3.2). F(r) and G(t)  are 
given-real functions of t ,  different from zero only in the interval 0 -= t c r .  Before t = 0 
and after t =~ r the Hamiltonian is that of a free oscillator. We seek a solution of the 
corresponding timedependent Schradinger equation in the form (2.1) with the expansion 
coefficients now evidently depending on time, c, = cn(t). Using the matrix elements 

(nlAl(t)lm) = J;iis,,-if(t) +w'ZTG.,+if*(t) (3.3) 
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.fi 
20 f ( t )  E -aF(t) + -G(t)  (3.4) 

we obtain, with the help of the usual timedependent perturbation theory, the following 
system of simultaneous linear homogeneous differential equations for the functions c,(t): 

The group of equations (3.3, for all n, is exactly equivalent to the initial time-dependent 
Schodinger equation. Appropriate inititid conditions are 

c:) = 1 c,(o) = 0 for d l  n ji m. (3.6) 

Now, displaced number states have been related recently [31, 321 to the general form of 
the transition probability m --f n for a quantum oscillator driven by an extemalforce (this 
was found independently some time ago by Fey" [35, 361 and Schwinger [37]).~ This 
probabititj. is given by with the appropriate timedependent complex displacement 
parameter defined as the'Fourier transform of the 'force': 

t 
01 = a(t) -- f*(t')&'dt'. (3.7) 

~. : L  
One therefore expects that coefficients c,$'") (see (2.2)); tbgether with a(t) (see (3.7)), provide 
the required solution. This is, however, not the case, as one can easily see by substituting 
CL'") into (3.5). Only when the appropriate phase factor is incorporated (leaving the transition 
probability ~unchanged, of course), 

C" ((m) ~ eiy(O C" (m) (3.8) 

with 

do we get the required solution cn(t) + c:""(t). That the functions @')(t) provide the 
solution of the system of differential equations (3.5), for the initial conditions (3.6), can be 
proved by direct substitution into (3.5) and with the help of the following two recurrence 
relations valid for associated Laguerre polynomials: 

(m + k)L,"-')(x) - kL,")(x) +xL::;)(x) = 0 

q y ) ( X )  - L p ( x )  + L:$x) = 0. 

(3.10) 

(3.11) 

Since the phase factor $Y(') is independent of m and n, equation (2.1) implies, together 
with c,,(t) --f c;('")(t), that the modified wavefunction 

Y?)(x, t )  3 e i y ( % p ) ( x ,  t )  (3.12) 
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and not the displaced wavefunction Y$"(x, t )  alone, solves the given dynamic problem. 
The 'irrelevant' phase factor &'(') is actually quite important; without it the displaced 
number state coefficients (2.2) do not provide the solution of the time-dependent Scbradinger 
equation corresponding to the Hamiltonian (3.1),(3.2). Also, this phase is not to be 
overlooked in the determination of the phase accumulation (considered in the next section) 
in the wavefunction during the time evolution. 

In conclusion, if the quantum oscillator prepared initially in the eigenstate u,(x) is 
perturbed by a suitable transient external force, the displaced number state, modified with 
the phase factor e'Y('), is obtained. In particular, by pembing the quantum oscillator 
initially in the ground state one obtains the corresponding coherent state 142, 481, again 
modified with the phase factor SY( ' ) .  The considerations presented in this section show that 
not only the final state is a displaced number state; during the time evolution the oscillator 
passes continuously through a series of displaced states, corresponding to different values 
of the complex displacement parameter U@) defined by (3.7). 

I Me&- and D B PopoviC 

4. Pancharatnam phase 

In  this section we first determine the geometric phase for generally non-cyclic evolution 
from an initial displaced number state at time t l  to the final state at time t z  (0 < t~ c h) 
and, secondly, we apply the general formula to two simple examples, that of 6 and harmonic 
forcing functions. 

The first step in the determination of the Pancharat" phase is to remove the dynamical 
phase (the time integral of the expectation value of the Hamiltonian) from the corresponding 
wavefunction [17, 191. We define a new wavefunction: 

x i m ) ( x ,  t )  = exp ( i J d ' ( ~ ( t ~ ) )  d t f ) ~ : m ) ( x ,  t). (4.1) 

Replacing 8(t)Y$m)(x, t )  with %aY$"')(x, t)/ar, using (3.12), (2.4), (2.14), (2.6) and 

we get for the expectation value of the Hamiltonian (3.1) 

so that 

r 
~ ~ ' " ' ( x ,  t )  = exp [i( - y( t )  + (m + ;)wt + w J la(t')lZ dt')]Q$"(x, t). (4.4) 

0 

The second step is to form the inner product from two &$') functions corresponding to two 
dBerent times t l  and tz. Writing this complex number in polar form, 

J_'," x:m)*(x, t l ) x L m ) ( x ,  t z ) b  pm exp(ipm) pm z 0 (4.5) 
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we get the Pancharatnam phase Bm. With the help of (2.11) we obtain 

and 

B m  =~v(t i )  - ~ ( t z )  + 

(4.6) 1 ~ 2  pm = IL~)( I~IZI~) I  exp(-y1a121 

la(t)lZdt + Wa(ti)*a(tz) exp[io(tl - tdl) 

(4.7) 

ai2 = a(t1) exp(-iotl) - a&) exp(-i&). - (4.8) 
The last term in (4.7) takes into account the possibility that L,"(la1zIz), which is an 

mth degree polynomial, has a negative value. Equation (4.7), together with (3.7), (3.9) and 
(4.8), provides the general expression for the Pancharatnam phase for displaced number 
states. It is seen that pm depends on the quantum number m of the initial eigenstate. 

We now focus on two simple forcing functions. Consider first the case of &forcing: 

Here, f andt are two given constants, complex and real respectively. The corresponding 

l 
A 

+-[I  - ~gn(~:)(I~~~i~))i 2 
with 

f(t) = f8(t -0. (4.9) 

displacement patameter is obtained easily from (3.7): 
i 
f r  

a(t) = --f*@(t -2)eiw' - .(4;10) 

with 0 denoting the Heaviside step function. The Pancharatnam phase is, in this case, 

pm = -{o[(tz - t ) ~ ( t z  - t) - (tt - dio(t1 - Q.] - ~ ( t l  - i$(tz - If IZ 
fi2 

sin[o(tz - t l ) l }  

- . .  
(4.11) 

A. ~~ 

+ -U - sgn(L:)(lalzlZ))l. 2 
Physically more interesting is 'the case of the harmonic forcing function 

f(t) = fe'"' Iflei(''++) (4.12) 
IfLe'+ is acomplex constant and a(# o) for 0 i t i 5, and zero otherwise. In (4.12), f 

is the forcing angular frequency. The coiresponding displacement parameter is 

(4.13) 

It is seen that, in the complex a-plane, aft) traces a circle centred at the point I f  [e-'+/fr(m- 
Q) and with the radius If  I/fr]o - Q]. It returns to the initial value a(0) = 0 after every 
2 ~ / l w  - '21 seconds. The Pancharatnam phase is, in this case, 

(4.14) 

We see that, for a fixed t l ,  B,,, as a function of tz has an oscillatory contribution superimposed 
on a linearly increasing trend. 

1 - 4sin[$(o - s ~ ) t 1 ]  sin[%(o - ~ ) f z I  sin[f(o + Q)(tz - t l ) ]  

A + -U - sgn(L?!?(Ia1zI2))1. 2 
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5. The case of cyclic evolution 

In this section we consider the special case of cyclic evolution and demonstlate that the 
general expression for the Pancharah" phase (4.7) reduces to the corresponding Berry 
phase. In the second part we examine in some detail the special case of the harmonic 
forcing function. 

For a cyclic evolution the initial and final states of the oscillator have the same observed 
values. From a quantum viewpoint, the coordinatespace wavefunction Y$m)(x, t )  is the 
same, except that it acquires a phase factor independent of x .  Equations (2.4) and (2.5) 
show that this is achieved, for an evolution from tl to tz, if the centres of the wavepacket 
in the coordinate and momentum space return to their initial values 
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P&) = PE02). (5.2) 

These two conditions ensure that, for the evolution from tl to tz, the momentum-space 
wavefunction C$'")(p, t )  also acquires the same phase factor. Since x&) and p&) follow 
exactly the corresponding classical motion of the representative point in phase space with, 
in general, varying amplitude and phase shift (see (2.6), (2.7), (2.3) and (3.7)) we see 
that quantal cyclic evolution for the oscillator leads, in the case of displaced number states, 
directly to the classical notion of cyclic evolution. Classically there is no difference between 
the initial and final states, and the oscillator in its final state appears as if it has not undergone 
any evolution. The time tz - tl needed to retum to the initial state is the same from both 
quantum and classical considerations. 

Equations (5.1) and (5.2) are equivalent to the following two conditions (cf (2.6) and 
(2.7)): 

l 4 d l  = Ia(tz)l (5.3) 

W t ,  - (o(t,) = o t z  - (o(tz) + 2kx (5.4) (k = 0, fl, f2,. . .). 

Equation (5.3) requires that the magnitude of the complex displacement parameter 
(classically, the oscillating amplitude) returns to its initial value, while (5.4) requires that the 
initial and final values of the classical phase ot - (o differ, at most, by an integer multiple 
of 2x. 

Conditions (5.3) and (5.4) lead immediately to 0112 = 0, so that L,$')((lai~1~) = L,$')(O) = 
1 and therefore pm = 1. That this must indeed be hue can be seen from (4.5) since, for a 
cyclic evolution, the initial and final x$" functions are equal to within a phase factor. The 
Hamiltonian (3.1) is Hermitian and the evolution is unitary (norm-preserving). Additionally, 
(5.3) and (5.4) imply that the last two terms in (4.7) vanish and the Pancharatnam phase 
reduces to the familiar expression for the Berry phase [25] 

For a cyclic evolution the geometric phase for displaced number states becomes independent 
of the quantum number m and is, in fact, equal to the geometric phase for the coherent 
states. 
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Now, we focus on the case of the harmonic forcing function (4.12). Taking into account 
(5.3, we see that (4.14) gives 

We also have, from (4.13), and (2.6), (2.7) 

If the angular frequencies w and Q are commensurable (that is, if the ratio w / Q  is equal 
to a rational number n / N ,  with n, N positive integers), the representative point describes a 
closed curve in phase space (figure l(a)). If the ratio w / Q  is irrational, the curve does not 
close, but gradually fills (a region in) phase space (figure I@)). Since we are dealing here 
with a classically non-autonomous system, the phase trajectory c g  intersect with itself. We 
shall discuss three cases: 

(i) For any fl and w/S2 = n / N  (figure ](a)), the time for the oscillator to return to the 
initial x, and pc values, after afull cycle, is 

2n 2z 2n 272 
T r tz - tl = n- = N -  = (n - N ) -  = (n + N ) -  

w Q 0 -~a, w + Q ’  (5.9) 

Starting at the point (x&), p&)) in the phase space, the oscilIator returns-to the initial 
point after each T seconds. The last term in (5.6) vanishes and the Beny phase acquired 
during one cycle becomes simply 

(5.10) .~ S 
B = -(w z + Q)T~ 

with 

(5.11) 

denoting the area of the circle traced by u(t) in the complex a-plane. In this case the 
coordinatespace wavefunction acquires a phase factor, Y:”(x, t2 )  = e“(ph)Y~m)(x, tl) 
and the Hamiltonian returns to its original form, Indeed, the external ‘force’ r e m s  to its 
initial value, f ( t 2 )  = f ( t l )  (see (4.12) and (5.9)), so that, from (3.1), (3.2)’and (3.4), we 
have f?(i(tz) = f ? ( t l ) .  

(ii) If the starting point in the phase space happens to be one of the intersection points 
(A, B, . . .; figure l(a) or (b)),,additional possibilities arise. for the oscillator, but not the 
external yoforce’ fa), to rehun to the initial state. In the case depicted in figure l(a), the 
routes A + 0 + . A  and A + B +~ 0 + B --f A are the examples. In such cases, the 
oscillator r e m s  to the original phase point (xc(t l ) ,  p&)) after the time tz - t l ,  which is 
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2 

0 

-2 

-4 0 4 

Figure 1. Phase-space curve traced by the representative point (x.(f), p&) in the case of 
the harmonic forcing function (4.12) with B = d = a = I f  I = q5 = 1 .  (a) Commensurable 
angular frequencies o/C2 = n / N  = 3. The phase-space curve is closed and cyclic evolution 
is possible for any starting point. The phase-space curve 
O +  1 + 2-t 3 -, ... is open andgrJdually fills aregionin phase space. 

(b) o/P = II = irrational. 

some (appropriate) integer multiple of ZJT/(W + a), and both terms in (5.6) contribute to 
the phase. 

(iii) If f l  = 0, and therefore xc(0) = p,(O) = 0, we see from (5.7) and (5.8) that the 
oscillator return8 to the initial phase point 0 (fiewe l(u) or (b))  after each k / ( w  - Q) 
seconds and the phase acquired is simply 

W + Q  ==(=) (5.12) 

Note that in the (exceptional) cases (ii) and (i) we have Y('")(x,tl) = 
ei(phasc)Y~(m)(x, t , )  and f i ( r 2 )  # i?(rl). 

6. Conelusions 

In this paper we have discussed the Pancharamam phase for displaced number states of the 
harmonic oscillator. In particular, we reviewed the properties of these states and examined 
how a single quantum oscillator, driven by a suitable transient external force, evolves from 
the initial eigenstate U,@) to the final, displaced number state modified with a suitable 
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phase factor. We emphasized the significance of this, usually neglected, phase factor for the 
solution of the relevant time-dependent Schradinger equation and for the geometric phase 
accumulated in the wavefunction during the time evolution of the system. The general 
expression (4.7) for the geometric phase for a.non-cyclic evolution from an initial displaced 
number state at time tl to the final state at time t2 was derived and two examples, that of2 
and harmonic forcing, were presented. The special case of cyclic evolution was subsequently 
discussed. In p&cular, the conditions (5.3) aid (5.4) leading to such an evolution were 
derived. The relationship to the classical notion  of cyclic evolution was also discussed in 
some detail. It was demonstrated that the general expression for the Pancharatnam phase 
reduces to the corresponding Berry phase. We found that, in the case of cyclic evolution, the 
geometric phase for displaced number states becomes independent of the quantum number 
m and, in fact, equal to the geometric phase for the coherent states. Finally, these general 
considerations were illustrated with the special case of the harmonic forcing function. 

The simple harmonic oscillator occupies a privileged position in quantum physics. It 
is important in describing small oscillations about equilibrium positions and hence gives 
a description of many wave phenomena. It is in a one-to-one correspondence with a 
single mode of the electromagnetic field and is  thus central to quantum electrodynamics 
and quantum optics. In recent years, it has become possible to almost perfectly isolate 
single quantum harmonic oscillators from their environment [54,55], thus enabling detailed 
investigations of the dynamics of this simplest of dl quantum systems. It is expected 1331 
that the displaced number states can be prepared, in the realm of quantum optics, by driving 
the microwave cavity field (initially prepared in a number state) of the micromaser with a 
classical current. This will allow, among other things, the possibility of detection of the 
corresponding geometric phase. Such studies will, hopefully, yield a deeper understanding 
of the quantum mechanics of single, isolated harmonic oscillaiors. 
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